
NETAPP ON NETAPP EBOOK

NetApp IT’s Journey
from Monolith to
Microservices

NETAPP ON NETAPP EBOOK

01
C

on
te

nt Supporting customers at the
speed of conversation

Authors

02
Rebuilding our first critical
business application

03
Accessing data from
monolithic systems

04
Building web-based apps with
microservice technologies

Supporting customers Rebuilding critical apps

3

Accessing data Building new apps

3

Accessing data Building new apps

Supporting customers
at the speed of
conversation
By Robert Stumpf
Senior IT Director, Enterprise Solutions

Every day, hundreds of NetApp technical support engineers
troubleshoot customer cases on the front lines. They are
superheroes who handle 15,000 cases each month. Yet these
heroes were using “swivel chair” processes to navigate among
nine separate systems to find and capture case data, support
bulletins, known bug information, and knowledge base articles.
They had to manually retrieve and consolidate this information
to provide a solution to our customers.

To capture customer support knowledge in real time and
produce technical solution documentation, my solution delivery
team—working with our Customer Support Delivery business
partners and Service Management peers—rewrote the case
management system. We built the new system by using our new
DevOps framework, CloudOne Business Resilient Applications
(COBRA). Leveraging our internal platform called CloudOne, we
built COBRA to provide the templates, libraries, methodologies,
and processes to manage cloud-based microservices-based
architectures.

https://customer-pdf.netapp.com/83b575b00ab602a4d55f481ac1445350cc95b560-cs-netapp-devops.pdf
https://netappit.com/news/category/cloudone/

4

Rebuilding critical appsSupporting customers Accessing data Building new apps

We found that treating every
microservice as its own software was
a key first step, and although each
provides a separate service, they all
must work together. Microservices
scale better and are easier to manage
and test. They allow us to optimize
resources and have multiple teams
work on independent services, enabling
us to deploy more quickly—and pivot
more easily when needed. As a result,
our work velocity is three to four times
faster; code deployment happens in
seconds, not hours; and bug fixes can
happen almost immediately.

A solid UI design was also important
to the success of this project. With
COBRA and continuous integration
and continuous deployment (CI/CD)
capabilities built on top of CloudOne,
the team was able to quickly tune UIs
in response to user feedback. The
application was rolled out in phases
with weekly releases to iterate on
improvements based on user feedback.

The new case management system
has nine microservices that retrieve
data from SAP, NetApp® Active IQ®,
troubleshooting tools, and knowledge
base systems. All data is delivered
through a custom-designed UI to
eliminate swivel chair processes and
increase the TSE team’s productivity.

Implement Knowledge-Centered
Service

One of the project’s objectives was
to help our Technical Support Center
transform by implementing an industry-
leading Knowledge-Centered Service
(KCS) v6 practice. KCS methodologies
increase the speed of creating and
publishing knowledge to customer self-
service, reduce the time to proficiency
for new TSEs, and decrease time
to resolution for cases with known
problems. Specifically, we integrated our
knowledge management and search
systems into the support engineer
interface so that TSEs could apply KCS
service delivery methodologies. This
kind of integration was not previously
possible.

A Smarter, Faster Support Center

Today, our TSEs can engage in real-
time knowledge capture that moves
at the speed of conversation with
our customers. The NetApp Support

Supporting customers Rebuilding critical apps

5

Accessing data Building new apps

5

Accessing data Building new apps

Center has increased its rate of
adding or updating knowledge tenfold,
contributing over 1,500 adds and
5,000 changes per week. The system
has many embedded data validation
points that proactively look for proper
conditions. It validates situations like
ordering a part that doesn’t fit the
customer’s installed base or processing
a customer case that isn’t entitled
to support. Another benefit is that
it’s easier to find customer-specific
instructions for on-site part deliveries
and field service, helping customers
with limited data center staff.

The new system has enabled automated
case creation based on inbound caller
data. When a call comes into the Tech
Support Center, the system uses an
algorithm that automatically enters
information from the telephony system
to aid call routing or populate the
initial ticket. All this has improved the
productivity of our TSE community.

Lessons Learned

We were fortunate to have an SAP
expert on the team who knew how to
take full advantage of the SAP feature
sets and UI microservices architectures.
His expertise and knowledge had a
significant impact on our success and
ability to make improvements.

We learned to spend extra time on
the UI when building an app with
very specific designs. Although our
DevOps framework made it easy to
change the UI, a good first pass was
important to address requirements,
because we were dealing with massive
amounts of data that came from the
former spreadsheet dashboards. This
approach was especially important
in building a system for technical
engineers who love information-
intensive screens.

It was challenging to rewrite a system
for a user base that is technically
savvy, highly opinionated, and
enamored by details. Although
we found the TSEs reticent to
give accolades, they did express
appreciation of the single data-entry
screen, embedded knowledge articles,
predefined templates and pulldown
menus, and the training videos and
instructions on the new system.

The NetApp Support Center has
increased their rate of adding or
updating knowledge by tenfold,
contributing over 1,500 adds and

5,000 changes per week.

10x

6

Rebuilding critical appsSupporting customers Accessing data Building new apps

Rebuilding a monolithic
enterprise application
with microservices and
DevOps

Like many companies, NetApp runs some old, large enterprise
applications that are maintained like zombies. Barely kept alive,
these apps are important to the company yet are complicated
to keep updated and are expensive to support. As the IT
leader for the developers who focus on custom business app
development inside NetApp, my team and I know firsthand the
challenges of rebuilding customized apps that are founded on
monolithic architectures.

Rebuilding Our First Critical Business App

With approximately 350,000 unique visitors per month, the
NetApp Support site is one of the most important channels
for our customers to get help when they need it. They can use
self-help, interactive chat with a support agent, or other forms
of digital support. It is an important part of our enterprise
landscape and is an award-winning support site.

Still, until recently, the Support site had never undergone a
major overhaul, only fragmented enhancements. Certain parts
of the site were still running 20-year-old original code. It had
become harder and harder for us to maintain and to improve
the site. New features were added as bolt-on applications,

By Florian Lippisch
Senior Manager, Services Enablement Solutions

https://mysupport.netapp.com/
https://mysupport.netapp.com/info/web/about.html

7

Rebuilding critical appsSupporting customers Accessing data Building new apps

resulting in a mixture of technologies
and integrations that became risky
with the security challenges that are
prevalent with older, cobbled-together
code.

When it became clear that something
had to be done with the site, we also
recognized that our business models
were changing faster than ever and
that digital support was of the utmost
importance. From an application
support perspective, we needed to be
able to react to change requests quickly
and cost-effectively. The only way to
achieve this goal was to rebuild the
entire site from scratch.

For the new architecture, we decided
to use a microservices-based approach
that was developed with DevOps
principles. This approach was a great fit
for our needs.

As the following figure shows, we went
from monolithic stacks to an Angular-
based single-page application (SPA)
UI that uses microservices running in
containers.

By using microservices running in
containers, we could break down
a complex, large monolith app into
smaller, easier-to-manage services.
Such services are easier to test
automatically through unit and contract-
based testing. This testing is a key
aspect because it’s important to “trust”
any changes that are being made. Only
then can we roll out updates quickly and
with confidence.

The scalability of a container application
to handle peak usage periods is another
important aspect. Because the Support
site is a large public-facing site, we must
be prepared to handle peaks without

8

Rebuilding critical appsSupporting customers Accessing data Building new apps

disruption. Running an application in
containers gives us a great abstraction
layer from the infrastructure, and it
makes the application more fluid. We
can now easily move parts, or even the
whole application, into the public cloud
or back to our private cloud if we want
to. Microservices running on containers
were clearly the right architecture
choice for the rebuild of the site.

Also, the timing is perfect for the
Support business team which had just
completed a user-centered design to
modernize the Support site. The new
design optimizes operations around
user choice, provides rapid content
publishing, and supports low-effort
customer experiences. The timing also
aligns perfectly with an effort that
my coworkers on the IT Foundational
(Infrastructure) Services team had just
delivered: a new DevOps-based platform
called CloudOne.

The CloudOne platform was built
to provide all the cloud and other
technologies that my developers
needed. It starts with a quick initial
setup through a self-service portal
that triggers automated processes to
set everything up end to end. But it
does not stop there. It handles all the
infrastructure setup through automation
as part of our deployment pipelines and
provides a rich set of monitoring and
management tools.

With all the CloudOne features, for the
Support site rebuild, my team could
simply focus on developing code to
run in the provided containers without
having to worry about anything
infrastructure related.

With our maiden voyage into the world
of microservices and containers, we

learned several things.

https://www.netapp.com/us/forms/live-events/netapp-it-devops-perspectives-ebook.aspx
https://www.netapp.com/us/forms/live-events/netapp-it-devops-perspectives-ebook.aspx

9

Early Lessons

• No system lives in isolation, which
is especially true for the Support
site. Bringing this new, modern
world together with our legacy
environments was certainly a tough
task. And although DevOps is about
getting things done with speed, it is
not necessarily true for large legacy
systems. Starting the integration
as early as possible is therefore
important.

• DevOps comes not only with
technical processes such as
continuous integration and
continuous deployment (CI/CD),
but it also applies strong agile
practices on a project that affects
everyone. All the speed that you get
from the architecture and platform
automation requires the inflow of
work, the testing, and the feedback
loops to be performed in a timely
manner. Getting everyone into the
right “flow” takes some time and
practice across all parties who are
involved in the project. And proper
change management is vital to get
there quickly.

Next Steps

Although rebuilding the NetApp Support
site wasn’t always easy and required
collaboration and support from different
levels, it was totally worth the effort and
was a great experience for my team. And
there’s more to the story.

Throughout this ebook, my team and
I will share how we determined what
technologies to use in our microservices
architecture, what choices worked well,
and what mistakes were made along the
way.

Rebuilding critical appsSupporting customers Accessing data Building new apps

Accessing data

10

Building new apps

10

Building new apps

Using microservices
to access data from
monolithic systems
By Amit Vij
Business Systems SOA and Integrator

The NetApp Support site, which provides our customers with
self-help, interactive chat, and other forms of digital support,
has been rebuilt on smaller, easier-to-manage services. The
site has been transformed from an application with monolithic
stacks to a modern microservices-based architecture, front
ended by an Angular-based single-page application (SPA) UI.

One key back-end system for the Support site is our Enterprise
Content Management (eCM) application and its content
repository. The team analyzed the functionality associated with
the legacy monolith eCM and identified granular services that
needed to be exposed. One identified service was the Software
Download (SWDL) function in eCM.

An important piece of our transformation was the continued
need to retrieve vital data from several back-end systems that
would remain monolithic, at least until modernized in the future.
Our challenge was to develop services that interface with the
legacy back-end monolithic applications. We chose a solution
that delivered RESTful APIs, exposing the desired functions,
abstracting the legacy systems, and interfacing through an API
Gateway platform.

Rebuilding critical appsSupporting customers

1111

API Abstraction Layer

RESTful APIs were developed to
provide the identified services. These
RESTful APIs were registered in the
API Gateway platform and accessed
by the microservices from the service
layer. The RESTful API completely
abstracts the legacy systems and
masks its complexity. The SWDL
service can then be reused by other
front-end applications that require
software download functionality. Other
applications that need SWDL function

can also access the SWDL APIs
directly. The back-end eCM system
is completely abstracted from this
function.

This new mechanism offers a way
to break down our legacy monoliths
and convert them into modern
microservices-based applications. The
legacy system can be transitioned to
any modern application framework,
providing that it preserves the API
signatures, so that consumers can
seamlessly access them.

Accessing data Building new appsBuilding new appsRebuilding critical appsSupporting customers

1212

API signatures act like a contract between
provider and consumer.

The new NetApp Support site runs on CloudOne,
our DevOps-based platform. This platform
handles all infrastructure setup through
automation as part of our deployment pipeline.
It provides all the cloud and other technologies
needed via quick initial setup through a self-
service portal that triggers automated processes
to set up everything, end to end.

Lessons Learned

The first step in our journey was having a robust
cloud CI/CD infrastructure; expect a steep
learning curve to adapt these new mechanisms.

• A deep understanding of business
requirements and an implementation plan
are necessary to define the boundaries
of microservices; those boundaries are
not always clear. In our case, we grouped
subfunctions with the business process into a
single microservice.

• Compared to a monolithic infrastructure, there
are many layers and parts in the new design.
Troubleshooting issues could take more time
than usual; however, once the teams is familiar
with all aspects of the design, the time to
market new features is greatly reduced.

• A DevOps approach brings change to people
and processes as well as to technology.
Successful DevOps adoption requires a
consistent push and support from senior
management.

Accessing data Building new appsBuilding new appsRebuilding critical appsSupporting customers

Building new apps

1313

Building web-based
apps with microservice
technologies
By Daniel Otto
Domain Architect, CloudOne Business Resilient Apps

As applications rapidly migrate to public and private clouds,
application developers like me are expecting more from
traditional enterprise infrastructure. Simply providing servers
and storage in a corporate data center, even in a cost-effective
way, is no longer adequate. Inside NetApp, our IT Infrastructure
team embraced this demand and built a highly automated, self-
service, cloud-based application development platform called
CloudOne.

CloudOne was built for the rapid onboarding and delivery of
integrated software development pipelines and new application
run-time environments (for example, containers). To effectively
use the platform, we needed an application development
framework. As a member of the application development team,
I became the domain architect for the new CloudOne Business
Resilient Applications (COBRA) framework.

COBRA Framework

We built the COBRA framework as a standard template for
implementing web-based applications with microservice
technologies (by using Java Spring Boot) in combination
with an Angular UI. IT includes automated builds, deployment

Rebuilding critical appsSupporting customers Accessing data

1414

processes, orchestration, and
monitoring and logging capabilities. We
created the framework to build web-
based applications, even though it isn’t
limited to this type of application.

For the new architecture, we decided
to use a microservice-based approach
that was developed with DevOps
principles. This approach was a great fit
for our needs. We went from monolithic
stacks to an Angular-based single-page
application UI that uses microservices
running in containers. Technically, we
differentiated between four zones:

The client is the web or mobile
application. The application can be built
with any technology that can make
HTTP calls to the UI gateway, even

though Angular is the preferred client
framework for building a single-page
application.

The UI gateway is the entry point
for the client to access back-end
services. The UI gateway handles all
calls from the client to the services,
routing them to the appropriate
containers according to the internal
configuration. Anonymous calls are
allowed for certain routes, but if a user
wants to log in, the login is handled
by the UI gateway. It also handles user
authentication that uses OAuth 2.0.
Any identity provider that supports
OAuth — for example, Google or GitHub
— can be connected. The UI gateway is
technically a microservice.

• Untrusted
• Connects via HTTPS to

the UI Gateway
• Browser on mobile

devices or desktop
clients

• Native mobile apps

• Accessible from within
CloudOne only

• Microservices
hosted in container
on Kubernetes in
CloudOne

• Accessible from outside
(DMZ)

• Allows access for
both anonymous and
identified users

• Handles identification
process

• Hosted in CloudOne

• Systems in corp
network

• Preferably accessed
through axway API
Gateway

Client Microservices Environment

UI Gateway Internal Boundary Systems

Building new appsRebuilding critical appsSupporting customers Accessing data

15

The microservice environment runs in
CloudOne and is accessible only through
the UI gateway. Each microservice is
like a standalone product: It has its
own repository and build/deployment
pipeline, and it runs as a pod on its own.
It’s accessed by other services, such as
the UI gateway or any other microservice
in CloudOne. It isn’t directly accessible
from outside the environment.When a
call is made to a microservice, a security
token must be added to the request.
The UI gateway does this automatically,
even for anonymous users. This action
requires services, which call other
services, to obtain a security token from
the UI gateway before making the call.
Although microservices can be built
with any technology, we used Java
and Spring Boot for our framework. In
certain cases, developers may use other
technologies if they provide substantial
reasons.

Internal boundary systems are our
major legacy applications like Oracle
Enterprise Resource Planning (ERP)
and SAP CRM and are accessible only in
the corporate network. The CloudOne
environment, though, doesn’t allow any
direct access to the corporate network,
which is why all calls to these systems
need to get routed through a specific
API gateway. This approach provides an
extra level of security.

Last year, we successfully rebuilt
the NetApp® Support site by using
the COBRA framework and its
microservice-based architecture. With
approximately 350,000 unique visitors
a month, it’s NetApp’s digital channel
for customers and partners who seek
information and support related to our
products.

Building new appsRebuilding critical appsSupporting customers Accessing data

16

Rebuilding critical apps

16

AUTHORS AND ADDITIONAL RESOURCES

© 2020 NetApp, Inc. All Rights Reserved. NETAPP, the NETAPP
logo, and the marks listed at http://www.netapp.com/TM are
trademarks of NetApp, Inc. Other company and product names
may be trademarks of their respective owners.

Meet the NetApp IT experts

Robert Stumpf is the Senior Director of Enterprise Solutions Delivery
and is responsible for all the business applications development and
delivery of IT projects at NetApp. In additional to playing a major role in
the successful transformation of IT since 2015, Robert and his team were
instrumental in the quick and successful replacement of cloud-based
Sales Force Automation with SAP Hybrid Cloud Customer (C4C).

Florian Lippisch is the Senior Manager for Services Enablement Solutions
and manages a strong and talented team of technical engineers who
develop custom applications to support NetApp’s global business
processes. Florian and team build applications from the ground up—using
generic open source frameworks—to implement features not readily
found in packaged business applications.

Amit Vij, business systems SOA and integrator for NetApp IT, manages the
infrastructure for Oracle WebCenter Content, a multitenant enterprise
platform. He designs solutions based on automation, user experience, and
content publishing.

Daniel Otto is the Domain Architect for COBRA, the framework inside
NetApp for managing cloud-based microservice-based architectures. He
is a passionate software engineer for 25 years, living in one of the most
beautiful spots in Bavaria, Germany.

For more information on CloudOne and NetApp IT’s DevOps Journey,
check out the four-part DevOps eBook Series.

https://www.netapp.com/us/forms/live-events/netapp-it-devops-perspectives-ebook.aspx

